The sum of the series ∑n=1∞sinn!π720 is
sinπ180+sinπ360+sinπ540
sinπ6+sinπ30+sinπ120+sinπ360
sinπ6+sinπ30+sinπ120+sinπ360+sinπ720
sinπ180+sinπ360
Explanation of the correct option.
Given : ∑n=1∞sinn!π720
=sinπ720+sin2!π720+sin3!π720+sin4!π720+sin5!π720+sin6!π720+sin7!π720...................∞terms=sinπ720+sinπ360+sinπ120+sinπ30+sinπ6+sinπ+sin7π+sin56π..................∞terms
We know that, sinnπ=0,∀n∈N
Thus in the above expression, the terms after the first five will be equal to 0.
Therefore,
∑n=1∞sinn!π720=sinπ720+sinπ360+sinπ120+sinπ30+sinπ6=sinπ6+sinπ30+sinπ120+sinπ360+sinπ720
Hence, option C is the correct option.