The sum of the series tan−112+tan−118+tan−1118+tan−1132+⋯+∞ is
tan−1(12r2)=tan−1(24r2)
=tan−1(2r+1)−(2r−1)1+(2r+1)(2r−1)
=tan−1(2r+1)−tan−1(2r−1)
Thus,
∑nr=1tan−1(12r2)=∑nr=1tan−1(2r+1)−tan−1(2r−1)
=tan−1(2n+1)−tan−1(−1)
=tan−1(2n+1)−π4
limn→∞tan−1(2n+1)−π4
=π2−π4=π4