The correct option is B 4π
cos(x)(cos(π3−x)cos(π3+x))=14
cosx2[2cos(π3−x)cos(π3+x)]=14
cos(x)(cos2π3+cos(2x))=12
cosx(−12+2cos2x−1)=12
cos(x)(2cos2x−32)=12
2cos3x−3cosx2=12
4cos3x−3cosx−1=0
cos3x−1=0
cos3x=1
3x=0,2π,4π,6π
x=0,2π3,4π3,2π
Hence 0+2π3+4π3+2π
=6π3+2π
=2π+2π
=4π.