Let the three consecutive numbers be x,x+1 and x+2
So,
According to given question,
x2+(x+1)2+(x+2)2=149
⇒x2+x2+2x+1+x2+4x+4=149
⇒3x2+6x=149−5
⇒3x2+6x=144
⇒3(x2+2x)=144
⇒x2+2x=48
⇒x2+2x−48=0
⇒x2+8x−6x−48=0
⇒x(x+8)−6(x+8)=0
⇒(x+8)(x−6)=0
If x+8=0,⇒x=−8
If x−6=0,⇒x=6
Given that, the three consecutive numbers are natural numbers
∴ x cannot be −8
Hence, x,x+1, and x+2⇒6, 6+1 and 6+2
⇒6, 7 and 8
Hence,
the three consecutive numbers are 6, 7 and 8