The sum of the squares of three distinct real numbers, which are in G.P. is S2. If their sum is αS and if α2 ϵ (a,b)−{c}, then find the value of ab + c.
Let the numbers be ar, a, ar such that a(r+1+1r)=αS
and a2(r2+1+1r2)=S2
Put r+1r=t ∴r2+1r2=t2−2
∴ a(t+1)=αS and
a2(t2−1)=S2
Eliminating S, we get a2(t2−1)=a2(t+1)2α2
∴ (t−1)α2=(t+1)
or t=α2+1α2−1
Now t=r+1r ∴ r2−rt+1=0
For t to be real t2−4>0∴ (t+2)(t−2)>0
∴ t<−2 or t>2
Hence from (1), we get α2+1α2−1<−2
or α2+1α2−1>2
⇒α2+1α2−1+2<0
or α2+1α2−1−2>0
α2−13α2−1<0
or α2−3α2−1<0
∴13<α2<1
or 1<α2<3
∴ α2ϵ(13,1)∪(1,3)⇒ α2ϵ(13,3)−{1}
∴ α=13, b=3, c=1
ab+c=2