Let the numbers be ar,a,a/r such that
a(r+1+1r)=αS
and a2(r2+1+1r2)=S2
Put r+1r=t ∴r2+1r2=t2−2
∴a(t+1)=αS and a2(t2−1)=S2
Eliminating S, we get a2(t2−1)=a2(t+1)2α2
∴(t−1)α2=(t+1) or t=α2+1α2−1
Now t=r+1r ∴r2−rt+1=0
For t be real t2−4>0 ∴(t+2)(t−2)>0
∴t<−2,t>2
Hence from (1), we get
α2+1α2−1<−2 or α2+1α2−1>2
or α2+1α2−1+2<0 or α2+1α2−1−2>0
Note : In an inequality we can multiply only by a +ive quantity. Here we do not know whether (α2−1) is +ive or −ive
or 3α2−1α2−1<0 or 3−α2α2−1>0 ⇒α2−3α2−1<0
∴3(α2−13)(α2−1)(α2−1)2<0
and (α2−1)(α2−3)(α2−1)2<0
The second implies that α2 lies between 1/3 and first implies that α2 lies between 1/3 and 1
∴α2∈(13,1)∪(1,3).