The correct option is A −125
Let the triangle be △ABC
Given,
L1:2x+3y+3=0⇒m1=−23
L2:y−x−2=0⇒m2=1
L3:2x−3y−3=0⇒m3=23
m1=−ve→obtuse angle
m2=+ve→acute angle
m3=+ve→acute angle
But m2>m3, so m2 will be second largest angle and m3 will be the least angle of the triangle.
So, arranging slopes in decreasing order with respect to angles, we get
m1>m2>m3
Now,
tanA=m1−m21+m1m2 =−23−11−23=−5tanB=m2−m31+m2m3 =1−231+23=15tanC=m3−m11+m3m1 =23+231−49=125⇒tanA+tanB+tanC=−5+15+125∴tanA+tanB+tanC=−125