The sum of the third and seventh term of an A.P. is 6 and their product is 8. Find the sum of first sixteen terms of the A.P.
Open in App
Solution
Let a be the common difference of the A.P. We have, a3+a7=6 and a3a7=8
⟹(a+2d)+(a+6d)=6 and (a+2d)(a+6d)=8
⟹2a+8d=6 and (a+2d)(a+6d)=8
⟹a+4d=3 and (a+2d)(a+6d)=8
⟹a=3−4d and (a+2d)(a+6d)=8 [Putting a=3−4d in the second equation]
⟹(3−4d+2d)(3−4d+6d)=8
⟹9−4d2=8⟹4d2=1⟹d2=14⟹d=±12
CaseI When d=12: Putting d=12 in a=3−4d, we get a=3−4×12=3−2=1 ∴S16=162{2a+(16−1)d}=8{2×1+15×12}=8×192=76 Case II When d=−12: Putting d=−12 in a=3−4d, we get a=3+2=5 S16=162{2a+(16−1)d} ⟹S16=8{10+15×−12}=8×52=20