The correct option is D 38
3x2+4mx+2=0
and 2x2+3x−2=0 have a common root.
2x2+3x−2=0
⇒(x+2)(2x−1)=0
⇒x=12,−2
If x=12 is the common root,
then 3⋅(12)2+4m⋅12+2=0
⇒m=−118
If x=−2 is the common root,
then 3⋅(−2)2+4m(−2)+2=0
⇒m=148
Sum of the values of m is,
148+−118=38
Alternate:
(c1a2−c2a1)2=(a1b2−a2b1)(b1c2−b2c1)
⇒(4+6)2=(9−8m)(−8m−6)
⇒100=(8m−9)(8m+6)
⇒32m2−12m−77=0
∴ Sum of values of m is 1232=38