Let the GP be ar,a,ar
thereforear,a,ar=56a(1r+1+r)=56a(r2+r+1r)=56a=56rr2+r+1
Given: ar−1,a−7,ar−21 is an A.P.
(a−7)−(ar−1)=(ar−21)−(a−7)a−7−ar+1=ar−21−a+7a(1−1r)−6=a(r−1)−14a(1−1r−r+1)=−8a(2r−1−r2r)=−856rr2+r+1(−r2+2r−1r)=−8
⇒7r2+r+1(−r2+2r−1)=−1⇒−7r2+14r−7=−r2−r−114r+r=7r2−r2+7−115r=6r2+6⇒6r2−15r+6=06r2−3r−12r+6=03r(2r−1)−6(2r−1)=0(3r−6)(2r−1)=0r=63=2 r=12a=56rr2+r+1 a=56rr2+r+1=16 =16
The GP's are
ar,a,ar⇒162,16,16×2=8,16,32 and 1612,16,16×12=32,16,8