Let 3 numbers in A.P. be (a−d),a,(a+d)
⟹ Sum of 3 numbers =12
a−d+a+a+d=12
3a=12
a=4
⟹ sum of their cubes =408
(a−d)3+a3+(a+d)3=408
a3−d3−3a2d+3ad2+a3+a3+d3+3a2d+3ad2=408
3a3+6ad2=408
a3+2ad2=136
(4)3+2(4)d2=136
8d2=136−64
8d2=72
d2=9
d=±3
d=3, series ⟹4−3,4,4+3
⟹1,4,7
d=−3, series ⟹4−(),4,4−3
⟹7,4,1
∴3 numbers are 1,4 and 7.