The sum of three numbers in A.P. is 15 and the sum of the squares of the extreme terms is 58. Find the numbers.
Let ( a - d ) , a , ( a + d ) are three numbers in A.P.
a - d + a + a + d = 15 ( given )
3a = 15
a = 153
a = 5
Sum of the extremes = 58
(a−d)2 + (a+d)2 = 58
2( a2 + d2 ) = 58
a2 + d2 = 29
52 + d2 = 29 [ since a = 5 ]
d2 = 29 - 25
d2 = 4
d = ± 2
Therefore, required numbers are:
If a = 5 , d = 2
a - d = 5 - 2 = 3
a = 5 ,
a + d = 5 + 2 = 7
3, 5 and 7