Let the three numbers are in AP=a,a+d,a+2d
According to the question,
The sum of three terms=27
⇒a+(a+d)+(a+2d)=27
⇒3a+3d=27
⇒a+d=9
⇒a=9−d....(i)
and the sum of their squares=275
⇒a2+(a+d)2+(a+2d)2=275
⇒(9−d)2+(9)2+(9−d+2d)2=275 [from(i)]
⇒81+d2−18d+81+81+d2+18d=275
⇒243+2d2=275
⇒2d2=275−243
⇒2d2=32
⇒d2=16
⇒d=√16
⇒d=+––4
Now, if d=4, then a=9−4=5
and if d=−4, then a=9−(−4)=9+4=13
So, the numbers are →
if a=5 and d=4
5,9,13
and ifa=13 and d=−4
13,9,5