The correct option is C 10,20,40
Let the number be a,ar,ar2.
According to question, 4a,5ar,4ar2 are in AP
⇒2×5ar=4a+4ar2
⇒4ar2−10ar+4a=0
⇒2a(2r2−5r+2)=0
⇒2r2−5r+2=0 (∵a≠0)
⇒(2r−1)(r−2)=0
⇒r=12,2
Again given, a+ar+ar2=70 ...(i)
When, r=2
from (i); a+2a+4a=70⇒7a=70⇒a=10
Therefore, terms are 10,10(2),10(22)i.e 10,20,40
Option B is correct.