Let the first , second & third number be x,y,z respectively
Given,
∴x+y+z=6
y+3z=11
x+z=2y or x−2y+z=0
Step 1
Write equation as AX=B
A=⎡⎢⎣1110131−21⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦,B=⎡⎢⎣6110⎤⎥⎦
Hence A=⎡⎢⎣1110131−21⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ & B=⎡⎢⎣6110⎤⎥⎦
Step 2
Calculate |A|
|A|=⎡⎢⎣1110131−21⎤⎥⎦
=1(1+6)−0(1+2)+1(3+1)
=7+2
=9
SO , |A|≠0
∴ The system of equation is consistent & has a unique solutions
Now AX=B
X=A−1B
Hence A=⎡⎢⎣1110131−21⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ & B=⎡⎢⎣6110⎤⎥⎦
=1(1+6)−0(1+2)+1(3−1)
=7+2
=9≠0
Since determinant is not equal to O, A−1 exists.
Now find adj (A)
Now A=B
X=A−1B
Step 3
Calculating X=A−1B
Calculating A−1
Now A−1=1|A|ajd(A)
adj A =
⎡⎢⎣A11A12A13A21A22A23A31A32A33⎤⎥⎦′=⎡⎢⎣A11A21A31A12A22A32A13A23A33⎤⎥⎦
A=⎡⎢⎣1−1234−52−13⎤⎥⎦
A11=1×1−3×(2)=1+6=7
A12=−[0×1−3×1]=−(−3)=3
A13=−0×(−2)−1×1=−1
A21=[1×1−(−2)×1]=−[1+2]=−3
A22=1×1−1×1=1−1=0
A23=[1×(−2)−1×1]=−[−2−1]=−(−3)=3
A31=1×3−1×1=3−1=2
A32=−[1×3−0×1]=−[3−0]=−3
A33=1×1−1×0=1−0=1
Hence, adj(A)=⎡⎢⎣7−3230−3−131⎤⎥⎦
Now ,
A−1=1|A|adj(A)
A−1=19⎡⎢⎣7−3230−3−131⎤⎥⎦
Solution of given system of equations is
X=A−1B
⎡⎢⎣xyz⎤⎥⎦=19⎡⎢⎣7−3230−3−131⎤⎥⎦⎡⎢⎣6110⎤⎥⎦
⎡⎢⎣xyz⎤⎥⎦=19⎡⎢⎣42−33+018+0+0−6+33+0⎤⎥⎦
⎡⎢⎣xyz⎤⎥⎦=19⎡⎢⎣91827⎤⎥⎦
⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣123⎤⎥⎦
∴x=1,y=2,z=3