The correct option is A 5
((log5k)2+log5k−2)x2−(22k−34⋅2k+64)x+(k2+7k−60)=0
For the equation to have more than 2 roots, it should be an identity, so
(log5k)2+log5k−2=0⇒(log5k+2)(log5k−1)=0⇒log5k=−2,1⇒k=125,5 ⋯(1)
22k−34⋅2k+64=0⇒(2k−32)(2k−2)=0⇒2k=2,32⇒k=1,5 ⋯(2)
k2+7k−60=0⇒(k+12)(k−5)=0⇒k=−12,5 ⋯(3)
From equations (1),(2) and (3),
k=5
Hence, sum of all values of k is 5.