2−x+3log52=log5(3x−52−x)
For log to be defined, we get
3x−52−x>0⇒15x−255x>0⇒15x>25⋯(1) (∵5x>0)
Now,
2−x+3log52=log5(3x−52−x)⇒log5(52−x)+log58=log5(3x−52−x)⇒8×52−x=3x−52−x⇒9×52−x=3x⇒52−x=3x−2⇒1=15x−2⇒x=2
Verying equation (1), we get
152=225>25
Therefore, the required value of x is 2.