log1/2(x−1)+log1/2(x+1)−log1/√2(7−x)=1
⇒−log2(x−1)−log2(x+1)+log√2(7−x)=1
For the log to be defined,
x−1>0⇒x>1x+1>0⇒x>−17−x>0⇒x<7∴x∈(1,7)
Now, −log2(x−1)−log2(x+1)+log√2(7−x)=1
⇒−log2(x−1)−log2(x+1)+2log2(7−x)=1⇒log2(7−x)2(x+1)(x−1)=1⇒(x−7)2(x+1)(x−1)=2⇒x2−14x+49=2x2−2⇒x2+14x−51=0⇒(x+17)(x−3)=0⇒x=−17,3
But x≠−17
∴x=3