The correct option is A 10×(11!)
10∑r=1(r2+1)×(r!)
=10∑r=1((r+1)2−2r)×(r!)
=10∑r=1(r+1)(r+1)!−210∑r=1r×(r!)
=10∑r=1{(r+1)(r+1)!−r×(r!)}−10∑r=1r×(r!)
=(11×(11!)−1)−10∑r=1r×(r!)
=(11×(11!)−1)−10∑r=1(r+1−1)×(r!)
=(11×(11!)−1)−(10∑r=1(r+1)!−10∑r=1r!)
=(11×(11!)−1)−(11!−1!)
=11×(11!)−11!
=10×11!