The correct option is B 1−121.220
The general term:
tr=r+2r(r+1).(12)r=2(r+1)−rr(r+1).(12)r=(2r−1r+1).(12)r=1r.(12)r−1−1r+1.(12)r
Thus, we have the series:
r=1:11.(12)1−1−11+1.(12)1=1−122
r=2:12.(12)2−1−12+1.(12)2=122−13.22
r=3:13.(12)3−1−13+1.(12)3=13.22−14.23
...
r=20:120.(12)20−1−120+1.(12)20=120.219−121.220
On adding the above terms, we have:
S=1−121.220
Hence, (a) is correct.