The correct option is A 2500
Let 1+150=x
Let S be the sum of 50 terms of the given series.
Then,
S=1+2x+3x2+4x3+…+49x48+50x49 ...(1)
xS= x+2x2+3x3+…+49x49+50x50–––––––––––––––––––––––––––––––––––––––––––––––––– ...(2)
(1−x)S=1+x+x2+x3+…+x49−50x50
⇒S(1−x)=1−x501−x−50x50
⇒S(−150)=−50(1−x50)−50x50
⇒S50=50
⇒S=2500