The correct option is A π2
Here, limit of the summation is from 1 to r
S∞=sin−11√2+sin−1(√2−√1√6)+sin−1(√3−√2√12)=limr→∞∑sin−1(√r−√r−1√r(r+1))=limr→∞∑sin−1(√r√r(r+1)−√r−1√r(r+1))=limr→∞∑sin−1(1√r√1−1r+1−1√r+1√1−1r)=limr→∞∑(sin−11√r−sin−11√r+1)=limr→∞(sin−11−sin−11√r+1)=limn→∞(π2−sin−11√r+1)=limr→∞(cos−11√r+1)=cos−10=π2