The nth term of the series is
tn=2n−13⋅7⋯(4n−1)
tn=12{4n−1−13⋅7⋯(4n−1)}
tn=12{13⋅7⋯(4n−5)−13⋅7⋯(4n−5)(4n−1)}, n≥2
Putting n=2,3,... in succession
t2=12{13−13⋅7}
t3=12{13⋅7−13⋅7⋅11}
⋮ ⋮
tn=12{13⋅7⋯(4n−5)−13⋅7⋯(4n−5)(4n−1)}
On adding, we get
t2+t3+...+tn=12{13−13⋅7⋯(4n−1)}
Sum to n terms, S=t1+t2+...+tn
=13+12{13−13⋅7⋯(4n−1)}
limn→∞S=13+12⋅13=12