The sum to (n+1) terms of the following series
C02−C13+C24−C35 + ......... is
None of these
(1−x)n=C0−C1x+C2x2−C3x3+.......
⇒x(1−x)n=C0x−C1x2+C2x3−C3x4+........
⇒ ∫10x(1−x)n dx = ∫10(C0x−C1x2+C2x3.......) dx ..........(i)
The integral on the LHS
= ∫01(1−t)tn(−dt) , by putting 1 - x = t
= ∫10(tn−tn+1) dt = 1n+1 - 1n+2
Whereas the integral on the RHS of (i)
= [ C0x22 - C1x33 + C2x44 - ............] = C02 - C13 + C24 - ........
∴ C02 - C13 + C24 - .......... to (n+1) terms
= 1n+1 - 1n+2 = 1(n+1)(n+2).