The correct option is D None of these
⇒x(1−x)n=C0x−C1x2+C2x3−C3x4+⋯
⇒∫10x(1−x)ndx=∫10(C0x−C1x2+C2x3⋯)dx⋯(i)
The integral on the LHS
=∫01(1−t)tn(−dt),byputting1−x=t
=∫10(tn−tn+1)dt=1n+1−1n+2
whereas the integral on the RHS of (i)
=[C0x22−C1x33+C2x44−⋯]=C02−C13+C24−⋯
∴C02−C13+C24−⋯ to (n+1) terms
=1n+1−1n+2=1(n+1)(n+2)