The correct option is B n(n+1)(n+2)(n+3)4
Tn=n(n+1)(n+2)
Let Sn denote the sum to n terms of the given series. Then,
Sn=n∑k=1Tk
=n∑k=1k(k+1)(k+2)
=n∑k=1(k3+3k2+2k)
=(n∑k=1k3)+3(n∑k=1k2)+2(n∑k=1k)
=(n(n+1)22)+3n(n+1)(2n+1)6+2n(n+1)2
=n(n+1)2{n(n+1)2+(2n+1)+2}
=n(n+1)4{n2+n+4n+2+4}
=n(n+1)4(n2+5n+6)
=n(n+1)(n+2)(n+3)4
Alternate Solution:
When n=1,
S=1×2×3=6
Now, checking the options,
n(n+1)(n+2)(2n+1)4=1(2)(3)(3)4=92
n(n+1)(n+2)(n+3)4=1(2)(3)(4)4=6
n(n−1)(n+1)(n+2)4=0
n(2n+1)(n+2)(n+3)4=1(3)(3)(4)4=9
Hence, the correct option is
n(n+1)(n+2)(n+3)4