The sum to n terms of the series 1√1+√3+1√3+√5+1√5+√7+...
12√2n+1−1
Let Tn be the nth term of the given series.Thus, we have:Tn=1√2n−1+√2n+1=√2n+1−√2n−12Sn=∑nk=1Tk=∑nk=1(√2k+1−√2k−12)12∑nk=1(√2k+1−√2k−1)=12[(√3−√1+)+(√5−√3)+(√7−√5)+...+(√2n+1−√2n−1)]=12{(−1)+√2n+1}=12{√2n+1−1}