The sum to 'n' terms of the series
tan−1(12)+tan−1(29)+tan−1(18)+tan−1(225)+tan−1(118)+.....∞ terms
tan−13
cot−1(13)
Tr=tan−1(√2r+1)2
Sn=∑nr=1tan−1(2r2+2r+1)
=tan−1r+2−r1+r(r+2)=tan−1(r+2)−tan−1r
S∞=−tan−12−tan−11
∴S∞=tan−1(3)=cot−1(13)