The correct option is C −n(n+1)2
Solve by putting different values for n.
When n = 2, given expression = -3
and when n = 4, given expression = -10
Only option (c) is correct for both cases, hence is a corrct answer.
Alternate (Conventional) Approach:
12−22+33−42+52−62+72−82+⋯
=(1−2)(1+2)+(3−4)(3+4)+(5−6)(5+6)+(7+8)(7−8)+⋯
=−(1+2)−(3+4)−(5+6)⋯
=−[(1+2)+(3+4)+(5+6)+⋯]
=−[1+2+3+4+5+6+⋯]=−[n(n+1)2]