The correct option is A 54+1516(1−15n−1)−3n−24(5n−1)
1+45+752+1053+…
Clearly, the given series is an AGP.
Let,
Sn=1+45+752+1053+…+3n−55n−2+3n−25n−1 ...(1)
15Sn=15+452+753+…+(3n−5)5n−1+3n−25n ...(2)
Subtracting (2) from (1), we get
Sn−15Sn=1+[35+352+352+…+35n−1]−(3n−2)5n
⇒45Sn=1+35(1−(15)n−1)(1−15)−(3n−2)5n
⇒45Sn=1+35[1−15n−1](45)−(3n−2)5n
⇒45Sn=1+34(1−15n−1)−(3n−2)5n
⇒Sn=54+1516(1−15n−1)−3n−24(5n−1)
Alternate solution:
For n=1,
S=1
Now, checking the options for n=1
54+1516(1−151−1)−3−24(51−1)=1
45+1615(1−151−1)+3−251−1=95
45+1615151−1+(1−3−251−1)=4
54+1516151−1−34(51−1)=2316