The correct option is
A 53:155We are given that (Sn)1(Sn)2=2n+36n+5 .......(1)
→ Sum of n terms of an AP
Sn=n/2[2a+(n−1)d]
SO2=(Sn)1(Sn)2=n/2[2a1+(n−1)d1]n/2[2a2+(n−1)d2] .........(2)
→a,a1 & a2 be the first term
d,d1 & d2 be the common difference
& n be the number of terms in an A.P.
From (1) & (2),
2n+36n+5=n/2[2a1+(n−1)d1]n/2[2a2+(n−1)d2]=2a1−(n−1)d12a2+(n−1)d2
2n+36n+5=a1+((n−1)/2)d1a2+((n−1)/2)d2 .........(3)
→ Now nth term in an A.P. =a+(n−1)d
So, (a13)1(a13)2=a1+12d1a2+12d2 .........(4)
→ In the equation (3) we can put n=25
So, we get equation (4)
So, 2n+36n+5=a1+12d1a2+12d2=(a13)1(a13)2, n=25
(a13)1(a13)2=2(25)+36(25)+5=53155
(a13)1(a13)2=53155.