The surface integral ∫∫sF.ndS over the surface S of the sphere x2+y2+z2=9, where F =(x+y)i + (x + z)j + (y + z)k and n is the unit outward surface normal, yields_______
226.19
Open in App
Solution
The correct option is A 226.19 By Gauss-Divergence Theorem ∫s∫F.nds=∫vdiv.FdV ∫v∇.[(x+y)^i+(x+z)^j+(y+z)^k]dV =∫v(1+0+1)dV =2∫vdV=2V V=43π.(3)3=36π 2V=2×36π=226.19