Let q0 and q be the instantaneous charges on C0 and C, respectively. Applying KVL to the circuit, we have
q0C0+qC+iR=ε
Differentiating this equation, we get
1C0dq0dt+1Cdqdt+Rdidt=0
or i[1C0+1C]=−RdidtoriC+C0CC0=−Rdidt((wherei=dq0dt=dqdt)
or Integrating this expression, we have
i(t)∫i0dii=t∫0dtRCeqor[logei]i(t)i0=−tRCeq
or i(t)=i0e−(t/R)Ceq (ii)
where i0 is the initial current.
Further, i0R+q0C0=εor i0=[E−q0C0]/R (iii)
Substituting i0 kom Eq. (iii) into Eq. (ii), we get
i(t)=[E−(q0/C0)R]e−(1RCeq),whereCeq=CC0(C+C0)