Given equations are
2x+py+6z=8
x+2y+qz=5
x+y+3z=4
Here D=∣∣
∣∣2p612q113∣∣
∣∣
Applying R1→R1−2R3
=∣∣
∣∣0p−2012q113∣∣
∣∣
=−(p−2)∣∣∣1q13∣∣∣
=−(p−2)(3−q)
=(p−2)(q−3)
∴D1=∣∣
∣∣8p652q413∣∣
∣∣
Applying C1→C1−4C2 & C3→C3−3C2
D1=∣∣
∣∣8−4pp6−3p−32q−6010∣∣
∣∣
Expanding along R3, then
D1=(−1)∣∣∣8−4p6−3p−3q−6∣∣∣
=(−1){(8−4p)(q−6)+3(6−3p)}
=4(p−2)(q−6)+3(p−2)3
=(p−2)(4q−15)
and D2=∣∣
∣∣28615q143∣∣
∣∣
Applying R1→−2R3
=∣∣
∣∣00015q143∣∣
∣∣
=0
and D3=∣∣
∣∣2p8125114∣∣
∣∣
Applying R1→R1−2R3
∴D3=∣∣
∣∣0p−20125114∣∣
∣∣
Expanding along R1 then
D3=−(p−2)∣∣∣1514∣∣∣
C3=(p−2)
By Cramer's rule :
x=D1D,y=D2D,z=D3D
For infinitely many solutions :
D=D1=D2=D3=0, ⇒p=2