The correct option is B -2
Given system of equations AX=B
where A=⎡⎢⎣α−1−11−α−11−1−α⎤⎥⎦, X=⎡⎢⎣xyz⎤⎥⎦,B=⎡⎢⎣α−1α−1α−1⎤⎥⎦
For no solution,
D=0
⇒D=∣∣
∣∣α−1−11−α−11−1−α∣∣
∣∣=0
⇒∣∣
∣∣α111α111α∣∣
∣∣=0
⇒(α−1)(α2+α−2)=0
⇒(α−1)2(α+2)=0
⇒α=1,−2
Now, for α=1
D1=∣∣
∣∣011011010∣∣
∣∣
⇒D1=0
Also, D2=∣∣
∣∣101101100∣∣
∣∣=0
D3=∣∣
∣∣110110110∣∣
∣∣=0
So, D=D1=D2=D3=0
Hence, at α=1 , system has infinitely many solution.
Now, for α=−2
D1=∣∣
∣∣−311−3−21−31−2∣∣
∣∣=−27≠0
Hence, at least one D1,D2,D3 is non-zero.