The correct options are
A π/3 B π/6 C 2π/3 D π/12The coefficient matrix for the given system of linear equations is given by-
A=⎡⎢⎣1−cosθcos2θ−cosθ1−cosθcos2θ−cosθ1⎤⎥⎦
This system of equations will have a non trivial solution if detA=0
Now, detA=∣∣
∣∣1−cosθcos2θ−cosθ1−cosθcos2θ−cosθ1∣∣
∣∣
⇒detA=∣∣
∣∣1−cos2θ−cosθcos2θ01−cosθcos2θ−1−cosθ1∣∣
∣∣ (C1→C1−C3)
⇒detA=∣∣
∣∣1−cos2θ−cosθcos2θ01−cosθ0−2cosθ1+cosθ∣∣
∣∣ (R3→R3+R1)
Expanding along C1 we get-
detA=(1−cos2θ){(1+cosθ)−(2cos2θ)}
⇒detA=(1−cos2θ)(2cos2θ−2cos2θ) (Since, 1+cos2θ=2cos2θ)
⇒detA=0
This implies that detA=0 irrespective of the value of θ. Hence the value of the determinant is 0 for all values of θ.
Thus, the given system of linear equations has a non trivial solution for every value of θ.
Hence, the correct answer is given by all four options, i.e.- options A,B,C,D are all correct.