The correct option is D all real values of θ
For non-trivial solutions,
Δ=∣∣
∣∣1−cosθcos2θ−cosθ1−cosθcos2θ−cosθ1∣∣
∣∣=0
Using C1→C1−C3,
Δ=∣∣
∣
∣∣2sin2θ−cos θcos2θ01−cosθ−2sin2θ−cosθ1∣∣
∣
∣∣=0
⇒2sin2θ∣∣
∣∣1−cosθcos2θ01−cosθ−1−cosθ1∣∣
∣∣=0
⇒sin2θ=0,
or 1[1−cos2θ]−1[cos2θ−cos2θ]=0
⇒sin2θ−[cos2θ−(cos2θ−sin2θ)]=0
⇒sin2θ−sin2θ=0 which is always true.
Hence, Δ=0 ∀ θ∈R