The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA=1100 , find CBA [see Fig. 9.21].
A
500
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
600
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
700
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
800
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C700 Given−PCisthetangentatapointCofthecirclewithdiameterABandcentreO.AB,extended,meetsPCatP&∠PCA=110o.Tofindout−∠CBA=Construction−WejoinOC.Solution−PCisthetangentatCandOCistheradiusfromOtoC.∴∠PCO=90oi.e∠OCA=110o−90o=20o.......(i)NowinΔOCAwehaveOC=OA(radiiofthesamecircle)∴ΔOCAisisosceles.⟹∠OCA=∠OACor∠BAC=20o...(ii)(fromi)Again∠ACBistheangleatthecircumferencesubtendedbythediameterABatC.So∠ACB=90o.....(iii)∠CBA=180o−(∠ACB+∠BAC)(anglesumpropertyoftriangles)=180o−(∠ACB+∠BAC)=180o−90o−20o=70oAns−70o