The tangent at any point P on the hyperbola x2a2−y2b2=1 with centre C,
meets the asymptotes in Q and R and cut off triangle CQR. Find the area of the triangle CQR.
ab
Lets consider a parametric point P (asecθ,btanθ) on the hyperbola x2a2−y2b2 = 1
Equation of the tangent at point P
x.asecθa2−y.btanθb2=1
xsecθa−ytanθb=1 -------------(1)
Equations of the asymptotes are
y=bax -------------(2)
and y=−bax --------------(3)
Let Q is the point of intersection of tangent of P with asymptotes y=bax
Solving equation (1) & (2)
x.secθa−bxtanθa×b=1
xasecθ−xatanθ=1
xa(secθ−tanθ)=1
x=a(sinθ−tanθ)
⇒ y=ba×a(sinθ−tanθ)=b(sinθ−tanθ)
Coordinates of point P(a(sinθ − tanθ),b(sinθ − tanθ))
or
p(a(sinθ − tanθ) × secθ + tanθ(sinθ + tanθ),b(sinθ − tanθ) × secθ + tanθ(sinθ + tanθ))
⇒ p(a(secθ + tanθ) , b(secθ + tanθ)
R is the point of intersection of tangent with h asymptotes y = −bax
similarly,
solving equation (1) & (3)
we get x = a(secθ − tanθ)
y = −b(secθ − tanθ)
R(a(secθ − tanθ) , −b(secθ − tanθ)
Area of triangle CQR is
=12 ∣∣ ∣ ∣∣1 1 1 0 a(secθ + tanθ) a(secθ − tanθ) 0 b(secθ + tanθ) b(secθ − tanθ)∣∣ ∣ ∣∣
= 12[1 − ab(sec2θ − tan2θ) − ab(sec2 − tan2)]
−1 × 0 + 1 × 0
=12[−2ab × 1]
=|−ab|
Area of the triangle CQR is ab