wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).

Open in App
Solution

The slope of the curve is given as dydx=tan θ.
Here,

θ=tan-1 2x+3y dydx=tantan-1 2x+3ydydx=2x+3y

dydx-3y=2x .....1Clearly, it is a linear differential equation of the form dydx+Py=Qwhere P=-3 and Q=2x I.F.=eP dx =e-3 dx = e-3xMultiplying both sides of (1), by I.F.=e-3x, we gete-3x dydx-3y=e-3x.2xe-3x dydx-3y=2xe-3xIntegrating both sides with respect to x, we gety e-3x=2xe-3x dx+Cy e-3x=2xIe-3xII dx+Cy e-3x=2xe-3x dx-2ddxxe-3x dxdx+Cy e-3x=-2xe-3x3+2×13e-3x dx+Cy e-3x=-23xe-3x-2×19e-3x+Cy e-3x=-23xe-3x-29e-3x+CSince the curve passes through 1, 2, it satisfies the above equation. 2e-3=-23e-3-29e-3+CC=2e-3+23e-3+29e-3C=269e-3Putting the value of C, we gety e-3x=-23x-29e-3x+269e-3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon