wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The tangent at P on the hyperbola x2a2y2b2=1 meets one of the asymptote in Q. If the locus of the mid points of PQ is a hyperbola, x2a2y2b2=λ, find the value of 4λ.

Open in App
Solution

Given hyperbola : x2a2y2b2=1-------------(1)
Let there be a point P(asecθ,btanθ) on hyperbola
Tangent from P:xsecθaytanθb=1---------------(2)
Meets one asymplote in Q.
Locus of mid point of PQ is another hyperbola
x2a2y2b2=λ-------------(3)
Let the midpoint be M
Point of intersectionof equation(2) and y=bax is Q:xsecθaytanθb=1 x=asecθtanθ
and now y=bsecθtanθ Q:(asecθtanθ,bsecθtanθ)
Now midpoint of PQ is M : ⎜ ⎜ ⎜asecθtanθ+asecθ2,bsecθtanθ+btanθ⎟ ⎟ ⎟
M : (asecθ+atanθ+asecθ,bsecθ+btanθ+btanθ)
(assecθ+tanθ=1secθtanθ)
Let the mid point of PQ be (h,k)
M lies on the equation (3) (2asecθ+atanθ)2a2(bsecθ+2btanθ)2b2=λ
λ=4a2sec2θ+a2tan2θ+4a2secθtanθa2b2sec2θ+4b2tan2θ+4b2secθtanθb2
λ=4sec2θ+tan2θ+4secθtanθsec2θ4tan2θ4secθtanθ
λ=4+(1)
λ=3
Value of 4λ=12

996072_1034888_ans_60c74c2bd8054192942aec9bffe01fa2.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon