Given hyperbola : x2a2−y2b2=1-------------(1)
Let there be a point P(asecθ,btanθ) on hyperbola
Tangent from P:xsecθa−ytanθb=1---------------(2)
Meets one asymplote in Q.
Locus of mid point of PQ is another hyperbola
x2a2−y2b2=λ-------------(3)
Let the midpoint be M
Point of intersectionof equation(2) and y=bax is Q:⇒xsecθa−ytanθb=1 ⇒x=asecθ−tanθ
and now y=bsecθ−tanθ ⇒Q:(asecθ−tanθ,bsecθ−tanθ)
Now midpoint of PQ is M : ⎛⎜
⎜
⎜⎝asecθ−tanθ+asecθ2,bsecθ−tanθ+btanθ⎞⎟
⎟
⎟⎠
M : (asecθ+atanθ+asecθ,bsecθ+btanθ+btanθ)
(assecθ+tanθ=1secθ−tanθ)
Let the mid point of PQ be (h,k)
M lies on the equation (3) ⇒(2asecθ+atanθ)2a2−(bsecθ+2btanθ)2b2=λ
⇒λ=4a2sec2θ+a2tan2θ+4a2secθtanθa2−b2sec2θ+4b2tan2θ+4b2secθtanθb2
⇒λ=4sec2θ+tan2θ+4secθtanθ−sec2θ−4tan2θ−4secθtanθ
⇒λ=4+(−1)
⇒λ=3
Value of 4λ=12