The correct option is
A on the left of
x=cdydxx=c =ex|x=c =ec
Therefore equation of the tangent will be
y−ecx−c=ec
y−ec=ecx−cec
y−ecx=ec(1−c)...(i)
Now the slope of the line joining (c−1,ec−1) and (c+1,ec+1)
=ec+1−ec−1c+1−(c−1)
=ec+1−ec−12
=ec−1(ec+1−(c−1)−1)2
=ec−1(e2−1)2
Hence
y−(ec−1)=(x−(c−1))ec−1(e2−1)2 ...(ii)
From i, we know
y=ecx+ec(1−c)
Substituting in the given equation, we get
2(ecx+ec−ecc−ec−1)=x(ec+1−ec−1)−c(ec+1−ec−1)+(ec+1−ec−1)
2ec−2ecc−2ec−1=x(ec+1−ec−1−2ec)−cec+1+cec−1+ec+1−ec−1
x(ec+1−ec−1−2ec)+(1−c)(ec+1−ec−1)=2ec(1−c)−2ec−1
x(ec+1−ec−1−2ec)=(1−c)(2ec−ec+1+ec−1)−2ec−1
x(ec+1−ec−1−2ec)=−(1−c)(ec+1−ec−1−2ec)−2ec−1
x=−(1−c)−2ec−1ec+1−ec−1−2ec
=c−1−2ec−1ec+1−ec−1−2ec
=c−(1+2ec−1ec+1−ec−1−2ec)
=c−k ...(i)
Where k is constant.
Now
c−k<c
Hence the intersection is towards the left of x=c.