Equation of parabola in polar form is
2ar=1−cosθ
⇒2ar=2sin2θ2⇒r=acsc2θ2
Let the vectorical angle of P and Q be α and β respectively
⇒SP=acsc2α2 and SQ=acsc2β2........(i)
Tangents at P and Q intersect at T , let its polar coordinates be (r′,ϕ)
⇒2ar=cos(ϕ−α)−cosϕ......(ii)⇒2ar=cos(ϕ−β)−cosϕ......(iii)
substracting (ii) and (iii)
⇒cos(ϕ−α)=cos(ϕ−β)⇒ϕ−α=ϕ−β⇒ϕ=α+β2
substituting in (ii)
⇒2ar′=cos(α+β2−α)−cosα+β2⇒2ar′=cosα−β2−cosα+β2⇒2ar′=2sinα2sinβ2⇒aST=sinα2sinβ2⇒ST=acscα2cscβ2⇒ST2=a2csc2α2csc2β2⇒ST2=(acsc2α2)(acsc2β2)
using (i)
⇒ST=SP.SQ
Hence proved.