x2a2+y2b2=1
Let point P be (h,k)
Equation of tangent in slope form is y=mx±√a2m2+b2
It passes through (h,k)
k=mh±√a2m2+b2k−mh=±√a2m2+b2
Squaring both sides
k2+m2h2−2hkm=a2m2+b2(h2−a2)m2−2hkm+k2−b2=0m1+m2=−ba=2hkh2−a2........(i)m1m2=ca=k2−b2h2−a2.........(ii)
(tanθ1+tanθ2)2=tan2θ1+tan2θ2+2tanθ1tanθ2(tanθ1+tanθ2)2=λ+2tanθ1tanθ2(m1+m2)2=λ+2m1m2
Substituting (i) and (ii)
(2hkh2−a2)2=λ+2k2−b2h2−a2(2hkh2−a2)2=λ(h2−a2)+2(k2−b2)h2−a24h2k2h2−a2=λ(h2−a2)+2(k2−b2)4h2k2=λ(h2−a2)2+2(k2−b2)(h2−a2)4h2k2=λ(h2−a2)2+2h2k2−2k2a2−2b2h2+2a2b2λ(h2−a2)2=2(h2k2+k2a2+b2h2−a2b2)
Replacing h by x and k by y
λ(x2−a2)2=2(x2y2+y2a2+b2x2−a2b2)
is the required equation of locus.