x2a2+y2b2=1
Let point P be (h,k)
Equation of tangent in slope form is y=mx±√a2m2+b2
It passes through (h,k)
k=mh±√a2m2+b2k−mh=±√a2m2+b2
Squaring both sides
k2+m2h2−2hkm=a2m2+b2(h2−a2)m2−2hkm+k2−b2=0m1+m2=−ba=2hkh2−a2........(i)m1m2=ca=k2−b2h2−a2.........(ii)
(tanθ1−tanθ2)2=(tanθ1+tanθ2)2−4tanθ1tanθ2d2=(m1+m2)2−4m1m2
Substituting (i) and (ii)
d2=(2hkh2−a2)2−4k2−b2h2−a2d2=4h2k2−4(h2−a2)(k2−b2)(h2−a2)2d2(h2−a2)2=4(h2k2−h2k2+a2k2+h2b2−a2b2)d2(h2−a2)2=4(a2k2+h2b2−a2b2)
Replacing h by x and k by y
d2(x2−a2)2=4(a2y2+b2x2−a2b2)
is the required equation of locus.