x2a2+y2b2=1
Let point P be (h,k)
Equation of tangent in slope form is y=mx±√a2m2+b2
It passes through (h,k)
k=mh±√a2m2+b2k−mh=±√a2m2+b2
Squaring both sides
k2+m2h2−2hkm=a2m2+b2(h2−a2)m2−2hkm+k2−b2=0m1+m2=−ba=2hkh2−a2........(i)m1m2=ca=k2−b2h2−a2.........(ii)θ1+θ2=2atan(θ1+θ2)=tan2atanθ1+tanθ21−tanθ1tanθ2=tan2am1+m21−m1m2=tan2a
SUbstituting (i) and (ii)
2hkh2−a21−k2−b2h2−a2=tan2a2hkh2−a2h2−a2−k2+b2h2−a2=tan2a2hkh2−a2−k2+b2=1cot2ah2−k2+b2−a2=2hkcot2ah2−k2−2hkcot2a=a2−b2
Replacing h by x and k by y
x2−y2−2xycot2a=a2−b2
is the required locus.