The correct option is D x−y=2 and x−y=8627
Slope of the tangent,
m=1
Given curve:
y=x3−2x2+x−2⇒dydx=3x2−4x+1
So,
dydx=3x2−4x+1=1⇒x=0, 43
For
x=0⇒y=−2 and
x=43,⇒y=−5027
Tangents to the curve at the points
(0,−2) and (43,−5027) are,
Therefore the equation of these tangents are
y−(−2)=1(x−0)⇒x−y=2
And
y−(5027)=1(x−43)
⇒x−y=8627