Let at time t, temperature of a body is T. Let S be the surrounding temperature, then according to Newton's cooling law
dTdt∝(T−S)
Since body looses temperature constant of variation is negative
∴dTdt=−k(T−S)
Now integrate both sides
dTT−S=−kdt
∫(1T−S)=−k∫dt
∴log(T−S)=−kt+c....(1)
Now t=1 and we have T=100oC
∴log(100−S)=c
From equation (1)
log(T−S)=−kt+log(100−S)
t=5⇒T−50oF
log(50−S)=−5t+log(100−S)...(2)
Also t=100⇒T−40oF
log(40−S)=−10t+log(100−S)...(3)
From equation (2) and (3)
15log(50−S100−S)=−k=110log(40−S100−S)
2log(50−S100−S)=log(40−S100−S)
∴(50−S100−S)2=(40−S100−S)
∴(50−S)2=(40−S)(100−S)
∴2500−100S+S2=4000−140S+S2
∴49S=1500=752
∴S=(37.5)oF
∴ Temperature of room is (37.5)oF