Let T be the temperature of the cooling object at any time t.
Given, dTdt∝(T−S)⇒dTdt=−K(T−S) where k is negative
⇒dTT−S=−k.dt
⇒log(T−S)=−kt+logc
⇒log(T−S)=−logc=kt
⇒logT−Sc=−kt⇒logT−Sc=e−kt
⇒T−S=c.e−kt⇒T=S+ce−kt
When t=0 and T=150,
⇒150=S+c⇒c=150−S
∴ The temperature of the cooling object at any time ′t′ is T.
=S+(150−S)e−kt