The third derivative of a function f(x) vanishes for all x. lf f(0)=1,f′(1)=2, and f′(2)= -1 then f(x)=
Letf(x)=ax2+bx+c(as f‘‘‘(x)=0) f(0)=c , c=1.....(1) f′(x)=2ax+b f′′(1)=2a+b=2 f′′(2)=4a+b=−1
a=−32,b=5,c=1
f(x)=3x2+10x+22
If f and g are two functions over real numbers defined as f(x) = 3x + 1, g(x) = x2 + 2, then find f-g